179 research outputs found

    Extreme asteroids in the Pan-STARRS 1 Survey

    Get PDF
    Using the first 18 months of the Pan-STARRS 1 survey we have identified 33 candidate high-amplitude objects for follow-up observations and carried out observations of 22 asteroids. 4 of the observed objects were found to have observed amplitude Aobs≥1.0A_{obs}\geq 1.0 mag. We find that these high amplitude objects are most simply explained by single rubble pile objects with some density-dependent internal strength, allowing them to resist mass shedding even at their highly elongated shapes. 3 further objects although below the cut-off for 'high-amplitude' had a combination of elongation and rotation period which also may require internal cohesive strength, depending on the density of the body. We find that none of the 'high-amplitude asteroids' identified here require any unusual cohesive strengths to resist rotational fission. 3 asteroids were sufficiently observed to allow for shape and spin pole models to be determined through light curve inversion. 45864 was determined to have retrograde rotation with spin pole axes λ=218±10∘,β=−82±5∘\lambda=218\pm 10^{\circ}, \beta=-82\pm 5^{\circ} and asteroid 206167 was found to have best fit spin pole axes λ=57±5∘\lambda= 57 \pm 5^{\circ}, β=−67±5∘\beta=-67 \pm 5^{\circ}. An additional object not initially measured with Aobs>1.0A_{obs}>1.0 mag, 49257, was determined to have a shape model which does suggest a high-amplitude object. Its spin pole axes were best fit for values λ=112±6∘,β=6±5∘\lambda=112\pm 6^{\circ}, \beta=6\pm 5^{\circ}. In the course of this project to date no large super-fast rotators (Prot<2.2P_{rot} < 2.2 h) have been identified.Comment: 31 pages; accepted by A

    Revising the age for the Baptistina asteroid family using WISE/NEOWISE data

    Get PDF
    We have used numerical routines to model the evolution of a simulated Baptistina family to constrain its age in light of new measurements of the diameters and albedos of family members from the Wide-field Infrared Survey Explorer. We also investigate the effect of varying the assumed physical and orbital parameters on the best-fitting age. We find that the physically allowed range of assumed values for the density and thermal conductivity induces a large uncertainty in the rate of evolution. When realistic uncertainties in the family members' physical parameters are taken into account we find the best-fitting age can fall anywhere in the range of 140-320 Myr. Without more information on the physical properties of the family members it is difficult to place a more firm constraint on Baptistina's age.Comment: 27 pages, 16 figures, accepted to Ap

    Increase in the oxygen concentration in Amazon waters resulting from the root exudation of two notorious water plants, Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae)

    No full text
    Qualitative and quantitative analyses were carried out to determine the amount of oxygen that enters the water through the root systems of two floating Neotropical plants, Eichhornia crassipes and Pistia stratiotes, under nearly anaerobic conditions. The physiological analyses were supplemented by anatomical investigations. A measurable oxygen input from both plants was detected: that from E. crassipes was 116 mg O2 * h-1 * m-2, and from P. stratiotes, 58 mg O2 * h-1 * m-2. Water surface area representing 4 kg and 2.9 kg fresh weight, respectively. The O2 input from E. crassipes seemed to be independent of the amount of photosynthesis, suggesting that a pressure ventilation was responsible for the input. In the case of P. stratiotes, a relationship was found between the photosynthetic activity and the O2 input. The significance of this input for the Neotropical ecosystem and the fish fauna is discussed

    The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4

    Full text link
    Asteroid families, traditionally defined as clusters of objects in orbital parameter space, often have distinctive optical colors. We show that the separation of family members from background interlopers can be improved with the aid of SDSS colors as a qualifier for family membership. Based on an ~88,000 object subset of the Sloan Digital Sky Survey Moving Object Catalog 4 with available proper orbital elements, we define 37 statistically robust asteroid families with at least 100 members using a simple Gaussian distribution model in both orbital and color space. The interloper rejection rate based on colors is typically ~10% for a given orbital family definition, with four families that can be reliably isolated only with the aid of colors. About 50% of all objects in this data set belong to families, and this fraction varies from about 35% for objects brighter than an H magnitude of 13 and rises to 60% for objects fainter than this. The fraction of C-type objects in families decreases with increasing H magnitude for H > 13, while the fraction of S-type objects above this limit remains effectively constant. This suggests that S-type objects require a shorter timescale for equilibrating the background and family size distributions via collisional processing. The size distributions for 15 families display a well-defined change of slope and can be modeled as a "broken" double power-law. Such "broken" size distributions are twice as likely for S-type familes than for C-type families, and are dominated by dynamically old families. The remaining families with size distributions that can be modeled as a single power law are dominated by young families. When size distribution requires a double power-law model, the two slopes are correlated and are steeper for S-type families.Comment: 50 pages, 16 figures, accepted for publication in Icaru

    Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1

    Get PDF
    The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of approximately 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 \pm 0.13 : 0.71 \pm 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.Comment: 10 pages, 10 figures, accepted by MNRA

    Near-Earth asteroid (3200) Phaethon. Characterization of its orbit, spin state, and thermophysical parameters

    Full text link
    The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is at only 0.14 au and is associated with the Geminid meteor stream. We aim to use all available disk-integrated optical data to derive a reliable convex shape model of Phaethon. By interpreting the available space- and ground-based thermal infrared data and Spitzer spectra using a thermophysical model, we also aim to further constrain its size, thermal inertia, and visible geometric albedo. We applied the convex inversion method to the new optical data obtained by six instruments and to previous observations. The convex shape model was then used as input for the thermophysical modeling. We also studied the long-term stability of Phaethon's orbit and spin axis with a numerical orbital and rotation-state integrator. We present a new convex shape model and rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and ecliptic coordinates of the preferred pole orientation of (319∘^{\circ}, −-39∘^{\circ}) with a 5∘^{\circ} uncertainty. Moreover, we derive its size (DD=5.1±\pm0.2 km), thermal inertia (Γ\Gamma=600±\pm200 J m−2^{-2} s−1/2^{-1/2} K−1^{-1}), geometric visible albedo (pVp_{\mathrm{V}}=0.122±\pm0.008), and estimate the macroscopic surface roughness. We also find that the Sun illumination at the perihelion passage during the past several thousand years is not connected to a specific area on the surface, which implies non-preferential heating.Comment: Astronomy and Astrophysics. In pres

    Discovery of A New Retrograde Trans-Neptunian Object: Hint of A Common Orbital Plane for Low Semi-Major Axis, High Inclination TNOs and Centaurs

    Get PDF
    Although the majority of Centaurs are thought to have originated in the scattered disk, with the high-inclination members coming from the Oort cloud, the origin of the high inclination component of trans-Neptunian objects (TNOs) remains uncertain. We report the discovery of a retrograde TNO, which we nickname "Niku", detected by the Pan-STARRS 1 Outer Solar System Survey. Our numerical integrations show that the orbital dynamics of Niku are very similar to that of 2008 KV42_{42} (Drac), with a half-life of ∼500\sim 500 Myr. Comparing similar high inclination TNOs and Centaurs (q>10q > 10 AU, a60∘a 60^\circ), we find that these objects exhibit a surprising clustering of ascending node, and occupy a common orbital plane. This orbital configuration has high statistical significance: 3.8-σ\sigma. An unknown mechanism is required to explain the observed clustering. This discovery may provide a pathway to investigate a possible reservoir of high-inclination objects.Comment: 18 pages, 4 figures, 1 table, accepted for publication in ApJ Letter
    • …
    corecore